
A New Method for Spectral Decomposition
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A frequent problem in analysis is the need to find two matrices, making varying contributions to individual voxels. We
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losely related to the underlying measurement process, which
hen multiplied together reproduce the matrix of data points.
uch problems arise throughout science, for example, in imaging
here both the calibration of the sensor and the true scene may be
nknown and in localized spectroscopy where multiple compo-
ents may be present in varying amounts in any spectrum. Since
oth matrices are unknown, such a decomposition is a bilinear
roblem. We report here a solution to this problem for the case in
hich the decomposition results in matrices with elements drawn

rom positive additive distributions. We demonstrate the power of
he methodology on chemical shift images (CSI). The new method,
ayesian spectral decomposition (BSD), reduces the CSI data to a

mall number of basis spectra together with their localized ampli-
udes. We apply this new algorithm to a 19F nonlocalized study of
he catabolism of 5-fluorouracil in human liver, 31P CSI studies of

human head and calf muscle, and simulations which show its
trengths and limitations. In all cases, the dataset, viewed as a
atrix with rows containing the individual NMR spectra, results

rom the multiplication of a matrix of generally nonorthogonal
asis spectra (the spectral matrix) by a matrix of the amplitudes of
ach basis spectrum in the the individual voxels (the amplitude
atrix). The results show that BSD can simultaneously determine

oth the basis spectra and their distribution. In principle, BSD
hould solve this bilinear problem for any dataset which results
rom multiplication of matrices representing positive additive dis-
ributions if the data overdetermine the solutions. © 1999 Academic

ress

Key Words: Bayesian methods; spectral analysis; bilinear forms;
MR spectroscopy; mixture analysis; positive additive distributions.

INTRODUCTION

A common need in the analysis of the large datasets f
n chemical shift imaging (CSI) and many other fields is
eduction of the very large amount of information containe
he data to a manageable size. For example, in a CSI e
ation 512 spectra of 512 points are usually acquired. W
any of these spectra contain nothing but noise, typically t
re still hundreds of spectra to analyze. These spectra are
ompletely independent of one another but rather are a mi
f a handful of spectra coming from different tissue ty

1 To whom correspondence should be addressed.
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nterested in how the CSI dataset can be decomposed in
patial distributions of the spectra of the different tissue ty
ince we know neither the spectra nor their spatial dist

ions, we must solve a bilinear problem in order to determ
hem simultaneously. Most traditional methods of data ana
e.g., Fourier transformation, least squares fitting) canno
ompose the data in this way, but simply estimate the ind
al spectra (or their properties) in each voxel with no atte

o determine their interrelationship.
In a general bilinear problem, the data matrix,D, can be

onsidered as a series ofM vectors taken fromRN, yielding an
3 N matrix. The problem is to obtain both the matrix

(K ! M, N) often nonorthogonal, basis vectors,F(K 3 N)
here the spectral shapes), and a mixing matrix,A(M 3 K),
hich gives the amount of each basis vector in the actual
he data is then related to the model through a matrix m
lication,

D 5 AF. [1]

his is similar to a standard “inverse” problem except tha
he “inverse” case one of the matrices is known, and thus
quares methods can be used to find the matrix which
izes the residuals between the reconstruction and the
ith neitherA nor F known (even ifK is only 2 or 3), the

roblem is much more difficult. Since the number of poss
olutions is very large and there is no analytical metho
dentify them, we use the Markov chain Monte Carlo pro
ure (MCMC) to sample the space of possible solution
etermine its properties. MCMC is a technique derived f
tatistical mechanics, where it has been used for more th
ears to explore the solution spaces associated with dis
ions of interacting molecules or spins. Since MCMC a
ithms directly sample the solution space, uncertainty estim
re determined simultaneously with a “best” solution. Furt

f the data support them, multiple solutions are possible. T
pplication to stochastic image processes was initially de
trated by Geman and Geman (1), leading to exploration of
ide variety of sampling procedures (2–4) for solution of

maging problems, reviewed by Besaget al. (5).
1090-7807/99 $30.00
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MCMC techniques require relative probability measure-
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162 OCHS ET AL.
ents at each sampled point in the solution space, whic
rovide through a Bayesian approach. In the past de
ayesian methods using MCMC techniques have been us
wide variety of problems in data analysis, e.g., med

maging, agricultural field studies, population studies, and
omic forecasting (6–10). Bayesian statistical analysis sta
ith the apparently trivial statement,

p~M, D! 5 p~MuD! p~D! 5 p~DuM! p~M!, [2]

herep(M, D) is the probability of both the model and the d
thejoint probability distribution), p(MuD) is the conditional prob
bility of the model given the data (theposterior), p(D) is the
robability of the data (theevidence), p(DuM) is the conditiona
robability of the data given the model (thelikelihood), andp(M)

s the probability of the model (theprior). The posterior distribu
ion is the solution space for our problem, since it measure
robability of the present model (sample) in light of the d
earrangement of Eq. [2] yields the posterior,

p~MuD! 5
p~DuM! p~M!

p~D!
, [3]

hich provides the MCMC algorithm with the needed pro
ilities in the solution space for the problem. Since the
ence,p(D), usually acts as a scaling parameter, it can

gnored in this case since MCMC only needs relative pr
ilities. This means that the relative probability at a point in
olution space is determined completely by the likeliho
hich is easily determined by comparing the model to the d
nd the prior, which is the probability of the model indep
ent of the data. The prior encodes any knowledge o
olution independent of the data. For example, a prior f
ystem reconstructing spectra might give higher probabili
narrow spike than to a flat offset.
Putting in the matricesA andF for the model leads to th

pecific form of Bayes’ equation (Eq. [3]) for the biline
roblem,

p~ A, FuD! } p~DuA, F! p~ A, F!. [4]

he sampling from the posterior distribution and the enco
f the prior are done using a heavily modified version of
assive Inference Gibbs sampler from MaxEnt Solutions L
ambridge, England, which also enforces positivity on
olutions. The primary modifications revolve around how
ikelihood changes as the MCMC samples the solution sp
he original Massive Inference system handled systems w
in Eq. [1] is a known constant matrix, which makes

hange in the likelihood dependent only on a change inF, dF.
henA is treated as a variable matrix on the same footin

, the calculations of the change in the likelihood with
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onstantly updated, which is discussed in detail below.
Some discussion about the choice of prior is necessary,

his is the area in which most of the controversies a
ayesian techniques arise. The objective is to use the
eneral possible arguments to determine a form of the

hat is appropriate to the general character of the problem u
onsideration with only a few adjustable parameters. S
SD is to reconstruct spectral shapes (known to contain f
harp lines) and spatial distributions (essentially images), u
he atomic prior from Massive Inference is appropriate.
tomic prior represents the model as a few point fluxes (at
ith the highest probability assigned to the distribution w

he fewest atoms. It contains only two adjustable parame
he average strength (flux) of the atoms and the probabili
nding an atom. Both are adjusted by the program to matc
ata. This prior follows naturally from general divisibil
rguments (11), and thus is widely applicable. For example
hould also be effective in describing systems where the
als arise from discrete objects (e.g., photons striking a

ographic plate, nuclei undergoing spin flips).
Once the prior is chosen, the remainder of the proble

traightforward, although a number of features have been ad
SD to improve efficiency. BSD starts the Markov chain a
oint in the posterior distribution representing a completely
odel containing a reconstructed flux equal to the flux in the

n this way the sampler starts nearer the region of high proba
hile avoiding any initial bias on expected spectral shape
istributions. The likelihood is calculated using the sum of
quares of the residuals normalized by the standard deviatis,
f the noise in the spectral data, i.e., a normalizedx2 distribution.
ather than perform a full likelihood calculation for each mo
ent of the Markov chain, the change in the likelihood is ca

ated for the specific change in the model, so that the likelih
an be updated incrementally. The likelihood,L, can be written in
atrix notation as

L 5
1

2s 2 Tr@~ AF 2 D! T~ AF 2 D!#. [5]

hereAT represents the transpose ofA and Tr indicates th
race of the quantity in the brackets. Then the behavior o
hange in the likelihood,DL, can be derived by looking at th
ffect of adding a small amount of flux,dF, to the model. By

nsertingF 1 dF for F in Eq. [5] and subtracting Eq. [5] fro
he result, the change in likelihood for a change inF is

DL~dF! 5
1

2s 2

3 TrF ~AdF!T~ AF 2 D!
1 ~ AF 2 D! TAdF 1 ~ AdF! T~ AdF! G , [6]

here it is assumed that only changes toF are made. Th
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163BAYESIAN SPECTRAL DECOMPOSITION
ector which measures the misfit between the data an
econstruction from the model, i.e.,

M 5 D 2 AF. [7]

great increase in calculational efficiency is gained by up
ng the mismatch vector incrementally after each Markov
ust as the likelihood is incremented. For added fluxdF, M
hanges by

DM 5 D 2 AdF, [8]

here only the affected components ofM must be updated
quations [6] and [8] have similar forms for changes in
odel forA. In order to simplify the calculations, we do n
llow simultaneous changes inA andF, since allowing suc
hanges would require evaluation of terms involvingdAdF.
ote that barring such changes does not prevent the s

rom reaching any state and should have no effect on the
esult, since the sampler can movedF followed by dA and
each the same point. As long as detailed balance is m
ained, the sampler still samples the space correctly. At
tep of the Markov chain, the program calculates the chan
he likelihood using Eq. [6] and determines whether to m
y comparing this with a randomly generated value. If the

s taken, the likelihood and the mismatch vector are upd
CMC samplers require a “burn-in” time to reach an are
igh probability which is suitable for sampling. The samp
uns for an operator-specified time without recording sam
nd then continues while recording for a further numbe
teps specified by the operator.
A final modification was made to BSD in order to more fu

epresent the physical world in the models. Atoms inF are
iven a Gaussian lineshape with a width defined by the o
tor, which is generally the natural width of the proble
sually directly measurable from the narrowest line in
pectrum. For the mixing matrix,A, a priori knowledge of the
bsence of material is sometimes available, so the operato
as the option of specifying a certain number of zeros in
olution component in theA matrix. For strongly overlappin
pectra, especially when a single line is dominate in one o
nderlying spectra, as in the CSI study of the human
resented below, it greatly improves efficiency to add sua
riori knowledge of the distribution of signals.
The operation of BSD on CSI and multispectral datase

traightforward. First, principal component analysis (PCA
sed to correct the data for instrumentally induced frequ
nd phase shifts as described previously (12, 13). PCA is then
pplied to the corrected data to determine the numbe

ndependent spectral shapes,K in Eq. [1], needed in the mod
o reconstruct the data. Generally it is obvious from the P
esults how many independent shapes are present in the
owever, if there is any uncertainty, BSD can be run w
he
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tandard deviation of the noise, and the linewidth are fed
SD together with the number of iterations desired. Thes

he only inputs that BSD requires to operate. During samp
SD is free to exchange flux between theA andF domains, so

he individual samples are scaled prior to averaging. BS
enerally run using several different Markov chains in orde
erify the results, as MCMC techniques have no establi
onvergence criteria. Since BSD samples the solution s
he output includes not only a mean solution but also un
ainty estimates at each spectral point as well as at
mplitude in the mixing matrix. If there are multiple possi
olutions, BSD will find these as well. The power of the B
lgorithm is demonstrated on a series of increasingly com
atasets below.

RESULTS

A straightforward example of the operation of BSD is p
ented in Fig. 1 with a study of the catabolism of 5-fluorour
5-FU) to a-fluoro-b-alanine (FBAL) in human liver durin
hemotherapeutic treatment (14). PCA was used to remov
mall frequency offsets in the individual spectra (Fig. 1a)
o determine that two orthogonal components adequatel
cribed the data. The BSD algorithm was told to search for
pectral shapes. These shapes and their amplitudes are
n Figs. 1b and 1c. Repeating the analysis with four diffe
eeds and thus four different Markov chains generated ide
esults (not shown). Note that the fluctuations in amplitud
ig. 1b are not due to the MCMC procedure but reflect
ctual variations in the data in Fig. 1a. The time constant o
xponential fit shown in Fig. 1d is 7.6121.27

11.90 minutes (95%
onfidence levels) for the decline of 5-FU, in agreement
reviously published results obtained using PCA (14). In this
ase BSD took less than 7 min on an Apple PowerB
400/200 running the application compiled using Metrow
odewarrior C and sampling 10,000 points from the post
istribution. Increasing the sampling to 20,000 points did
hange the result, demonstrating that the sampling
chieved equilibrium. Note that while the previous analysi
i et al. requiredad hoc transformation of the PCA comp
ents to reconstruct the 5-FU and FBAL spectra, these sp
hapes were determined automatically by BSD. The re
tructed spectral shapes clearly show the power of the a
rior, which encourages noise in the spectra to be reduc

he baseline, while maintaining features which are slig
bove the noise. The small peak on the shoulder of FBA
ig. 1c can be seen in the data in Fig. 1a; however, a da
ith better SNR would be required to confirm its presenc
A more complex decomposition problem is shown in Fig

his is a dataset comprising 2561H decoupled31P spectra o
ypical peak signal-to-noise ratio (SNR) of approximately
hese spectra were selected by choosing axial slices
ignal from 512 spectra (83 8 3 8 voxels) obtained by spati
nd time FFT of CSI data acquired from a volunteer’s hea
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or such studies), 64 of which are shown in Fig. 2a toge
ith the corresponding proton image in Fig. 2b, mak
irtually impossible to study individual peaks. PCA was ag
sed to align the spectra on the PCr peak. The PCA an
etermined that two components adequately described
ataset so BSD was run looking for two spectral shapes

heir distributions. Figure 2c shows the resulting reconstru
mplitude distributions on the same scale for compar
hile Fig. 2d shows the underlying spectral shapes, w
ere reconstructed using Gaussian lineshapes with widt
.7 points. The reconstructed spectral shapes are clearly

ifiable as characteristic of muscle tissue and of brain tis
he brain spectrum shows large phosphodiester and pho
onoester (PME) peaks, the expected broadbATP resonanc
rising from exchange between free and ATP-bound ma
ium, and the typicalbATP frequency shift indicating a low
ree Mg21 concentration than in muscle (16). The amplitude
how the muscle localized on the edge of the skull and a
ccipital lobes as expected, while the brain is internal to
uscle signal. Since the reconstructed spectra result

tting the model to 256 data spectra, there is a dram
mprovement in the SNR over the unprocessed data.

This case demonstrates some of the complexity of
rocedure since the solution in Fig. 2 was only one of
ossible solutions found by the BSD procedure. This solu
esulted when 12 zeros were set in the amplitude of
pectral shape deep inside the head, which had the effe
orcing that region to be represented by only the “bra
pectral shape. In addition to this solution, BSD found s
ions with a “brain” spectrum with either half or almost no P
hen run with no forced zeros. The fit to the data was
erved by adding a fraction (typically 10%) of the “musc
pectral shape into the brain region (see Fig. 3 for an ext
xample). In fact, Fig. 4 shows plots of the data, recons

ions from the models, and residuals for both cases. There
erceivable difference in the residuals, indicating that the
o support for one solution over the other in the data it
ince BSD samples the solution space directly, it finds
athematically possible solutions, which can be helpful w

he physical situation is not as well determined as here.
econd, nonphysical solution could be excludeda posterioriby
oting that the brain does not contain muscle tissue ora priori
y forcing a solution to have zero amplitude deep in the b
hea priori approach is computationally more efficient, si

t does not require many different Markov chains to ob
hysically significant results. Both BSD analyses on the
pectra of 369 points took roughly 9 h on a 600 MHzDigital

FIG. 1. Time series data for the catabolism of 5-FU to FBAL: (a) The
eak SNR; 7 acquired over 30 min following rapid (1-min) bolus inject
nd FBAL peaks are shown. (b) The amplitudes of the two underlying sp
c) The two underlying spectral shapes determined by BSD. At top is th
iddle. (d) An exponential fit by regression analysis to the decay of the

onfidence) was determined.
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osterior distribution following 24,000 iterations to allo
quilibration.
In order to explore the meaning of these multiple solut
ore fully, we generated a dataset composed of 100

pectra of 300 points each with strongly overlapping pe
ach spectrum in the data was a mixture of three basis sp
hich were modeled on typical muscle spectra contai
mall pH differences and smallJ coupling and ATP shif
ifferences. The basis spectra together with their distribu
re shown in Figs. 5a and 5b, respectively. The individual b
pectra contain 10 spectral lines, each with a Gaussian
hape of width 2.2 points. Random Gaussian noise was
dded to each data spectrum at different levels and BSD

old to search for three basis spectra using a number of d
nt Markov chains.
The picture which emerges from these simulations is
here BSD reliably finds the expected solution in cases w

he SNR is high, but as the noise level increases it finds
olution only part of the time. In Fig. 6, sample spectra of
ata for each noise level are shown. The differences bet

he simulated basis spectral shapes are primarily in the P
TP peaks. The maximum SNRs used in the simulation

hese peaks in the data are 8, 6, 4, and 2 for ATP and 16
, and 4 for Pi. Figure 7 shows the two solution types foun

he case of the highest SNR. As can be seen, they are a
dentical. The spectral shapes shown in Fig. 7a show s

inor crosstalk between the basis spectra in the ATP regio
he second and third spectra leading to small peaks aroun
xpected larger peaks. The uncertainties calculated by BS

hese peaks are roughly half their peak amplitude, indica
hat they are not well supported by the data (typical p
ncertainties claimed by BSD in these spectra are at the

evel while they are at the 5% level in the Fig. 7b solutio
oth solutions (Figs. 7a and 7b) show the correct larger p
ompared to the true basis spectra with the correct relation
etween Pi and ATP shifts andJ couplings. As the noise lev

s increased, BSD begins to find other possible solutions. A
econd highest noise level, 20% of the time (2 out of
arkov chains), BSD returns a solution (Fig. 8) which stron
ixes the three basis spectral shapes to form a solution w
as fewer atoms (thus a higher prior probability) while hav
higherx2 (thus a lower likelihood). The reconstructed m

l’s fit to the data is poorer as measured by a root mean s
esidual misfit in the amplitudes, which is more than twice
ize of the correct case. However, as Fig. 9 shows, the res
f the reconstruction compared to the data appear eq
niform. As the noise increases this solution is seen m

ta contain 51 points extracted from 30 1-min, nonlocalized19F NMR spectra with
of 5-FU. The time series runs from top to bottom and the locations of t
ral shapes within the data determined by BSD. The time axis runs from
-FU spectrum; at bottom is the FBAL spectrum with the RF carrier sho
plitude of the 5-FU signal. A time constant of 7.61 min (11.90/21.27 min at 95
da
ion
ect
e 5

am
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167BAYESIAN SPECTRAL DECOMPOSITION
ften, so that at the third level of SNR (ATP maximum SNR
), only one-third (7 out of 20 Markov chains) of solutions

he correct solution. Finally, in the analysis of the dataset
he lowest SNR, the prior probability dominates the solu
pace, and BSD prefers to fit the data with two basis spe
hapes to reduce the number of atoms. These results refle
eneral pattern seen in this type of Bayesian analysis, in w

he prior becomes more and more dominant as the inform
ontent in the data diminishes.

FIG. 2. CSI dataset (83 8 3 4 voxels of 22 cm3 each) from the human
pectra shown. (b) The corresponding1H image centered axially on the regio
lurs applied to make the distributions easier to see. The intensity scale
pectral shape characteristic of muscle tissue, while at the bottom is
econstructed spectral shape associated with muscle which shows shabAT
econstructed spectral shape associated with brain which showsbATP cente
aussian with width 5.7 points.

FIG. 3. Second solution for head data with no zeros set in the brain tis
s “muscle-like”; however, it now encroaches into the brain tissue region
. The spectra are similar except that the “brain-like” spectrum has los
f

h
n
ral
the
ch
on

These datasets also allowed a test of the effect of incre
quilibration and sampling times on the residuals. For
ighest SNR case, we took the two solution types and ra
ata through BSD for a variety of sampling periods. The
re summarized in Table 1, which shows that the sam
ettles down at different rates in different situations. The m
ith the smaller misfit essentially is close to its best possib
ithin only 20,000 samples (after 11,000 equilibration ste
hile the second model requires roughly 50,000 samples

d of a normal volunteer: (a)31P spectra from a single axial slice; 64 of 256 to
f the voxels. (c) The 83 8 amplitude distributions are shown with slight Gaus
the same in both distributions to aid in comparison. At top is the distribution for the
distribution for the spectral shape characteristic of brain tissue. (d) Atop is the

ines centered at218.62 ppm with PCr set at22.52 ppm. At bottom is th
at218.92 ppm with PCr set at22.52 ppm. The lineshape used by BSD w

. (a) Amplitude distributions for two solutions, again on the same scale. Tn
) Spectra corresponding to the distributions with linewidths of 5.7 points as in Fig
PCr, while thebATP and PME regions are mixed between the two solutions
hea
n o
is

the
rpP l

red
sue
. (b
t its
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168 OCHS ET AL.
4,000 equilibration steps) to reach its best fit. The us
ultiple Markov chains also aids in determining if adequ
quilibration and sampling time was allowed, since if

FIG. 4. Plots of full datasets, reconstructions, and residuals for head
ith an average across all the spectra at the far right. (a) and (b) The i

c) Reconstruction from the solution shown in Fig. 2. (d) Reconstruction
c). (f) Residuals, (b)2 (d), for reconstruction in (d).
of
e
olutions are not equilibrated, they will show different res
or different Markov chains.

We also wished to look at failure modes in BSD.

a: Each plot contains 256 spectra of 369 points each shown from left to rer
t datasets (identical to each other) with the low SNR and large variatioarent.
m the solution shown in Fig. 3. (e) Residuals, (a)2 (b), for the reconstruction i
dat
npu

fro
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169BAYESIAN SPECTRAL DECOMPOSITION
iscovered that if we put in incorrect linewidths, BSD s
nds the correct solution as often as with the correct linew
s long as the real linewidth is larger than the linewidth use
SD; however, the normalizedx2 value is higher than ex
ected. If the linewidth is too wide, however, BSD retu
pectra which are not realistic (incorrect frequency rela

FIG. 5. Model spectra and distributions: (a) Three model spectra sho
oes with left distribution, middle spectrum with middle distribution, bot
,
y

-

hips) so that BSD indicates to the user that there is a pro
n the model. If BSD is told to seek more than the cor
umber of solutions, the case is more complicated. Many t
e have seen BSD find one solution of the set with eith
ero solution (flat spectral shape with no amplitude) o
onphysical solution with a few random spikes in the spe

g shifts of peaks between them. (b) Amplitude distributions for spectra, tom
spectrum with right distribution.
win
tom
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hape and very low amplitude. However, in cases of high
nd strongly overlapping spectral shapes, it can crea
dditional solution. This shows the importance of having

ndependent procedure (PCA) which can be used in c
here there is extreme overlap in the basis vectors. If too
olutions are sought, BSD is unable to return a reason
ormalizedx2 value.
During sampling, BSD also gathers statistical data on

istribution of the possible models, which allows it to give b

FIG. 6. Sample data spectra from model in Fig. 5 together with Gau
eak SNR of 4 for ATP peaks. (d) Peak SNR of 2 for ATP peaks.
R
an
n
es
w
le

e

he mean model and the standard deviations of the points
odel. In the bilinear case, these uncertainties are more
lex than for a Markov chain in a linear system. In a bilin
ystem there is the possibility of correlated uncertainties
ween the two domains,A andF. In our specific instance th
s compounded by the treatment of an atom inF as a spectra
ine, which effectively means an atom inF is distributed ove

any points while an atom inA is not. In order to test th
ncertainties, we ran the high SNR dataset first with the co

n noise: (a) Peak SNR of 8 for ATP peaks. (b) Peak SNR of 6 for ATP
ssia
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FIG. 7. Two solutions found by BSD for highest SNR case: (a) First solution with higher root mean square misfit to the known distributions. (b
olution with lower root mean square misfit to the known distributions.
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inewidth and then with no linewidth (effectively treating ea
oint in the spectra independently). The uncertainties sum
ver all points inA and F are summarized in Table 2. He

here is a clear better overall fit to the spectra when atomsF
re given a lineshape, but this results in slightly poorer fit iA.
lso, the calculated standard deviations show that the sam

s more tightly locked into the spectral shapes when an ato

FIG. 8. “Bad” solution found in second highest SNR case: The root me

FIG. 9. Residual plots between the data and the reconstruction for
olution.
ed

ler
is

onverted to a linewidth than to a single point (standard d
tion of 8.53 1025 vs 1.43 1024). This leads to the sampl
ossibly underestimating uncertainties for the peak heigh

he spectral shapes and overestimating them for the ampl
n the mixing matrix, which indicates that running multip

arkov chains may be a better way to estimate uncertaint
he bilinear case.

square misfit to the known distribution is roughly twice that for the “good”

tions at second highest SNR ratio: (a) Plot for “good” solution. (b) Plo
an
solu
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One final example is a CSI dataset from human calf mu
he dataset was gathered as a 123 12 3 8 set, zerofilled, an
ourier transformed to 163 163 8 voxels as descibed for 83
3 8 datasets previously (17). Using the proton image, 15

pectra out of 2048 were selected for being within the leg in
wo axial slices showing the largest cross-section of calf m
le in the proton image. PCA was used to align the 156
pectra on the PCr frequency. Further PCA showed that
ere three components in the data with very large frequ
verlap among them. In Fig. 10a, one of the two axial sl

rom the calf muscle is shown, with a sample of the31P CSI
ata in figure 10b. The data are of high SNR; however, t
re no clear differences between them on initial inspec
igures 10c and 10d show the BSD results for ampli
istribution and spectral shape, respectively. The results a
verage of 50,000 samples from the posterior distribu

ollowing 25,000 steps of equilibration, which required
roximately 14 h on a Digital UNIX workstation with a 6
Hz alpha processor.
A summary of the differences between the spectra is g

n Table 3 and shows that there are three distinct signals a
rom the calf muscle. The first and second spectral shape
imilar, except for differences in pH. The third spectral sh
hows a smallergATP splitting due toJ coupling and a highe
ATP shift. In addition to their spectral differences, the co
onents have different spatial distributions within the
uscle as shown in Fig. 10c. The third shape is stronger i
osterior of the calf, while the first is stronger in the ante

TABLE 2
The Misfit to the Known Input for the Highest SNR Simulation

veraged over the Entire Dataset of Mean Amplitude 7754 and
ean Spectral Peak Height 3.33 3 1023, Including the Estimates

rom BSD for the Standard Deviations

Linewidth
(points)

Amplitude
RMS misfit

actual

Amplitude
avg. std.
dev. BSD

Spectra RMS
misfit actual

Spectra avg.
std. dev. BSD

56 564 1.793 1025 1.433 1024

(s 5 1.1) 66 690 1.513 1025 8.473 1025

Root Mean Square Deviations from the Known Amplitudes
for the Solutions Shown in Fig. 7

Number of
samples

First solution
amplitude misfit

(Fig. 7a)

Second solution
amplitude misfit

(Fig. 7b)

5,000 79
10,000 187 77
20,000 139 71
30,000 133 67
50,000 114 67
75,000 119 —
e.

e
s-
ta
re

cy
s

re
n.
e
an
n
-

n
ng
are
e

-
f
he
.

he second shape is strongest in a ring along the outer ed
he calf muscle. Initial results on other individuals indicate
he spectral shapes are consistent across individuals while
istributions show some variations. The origin of these di
nces is not clear; however, it seems plausible that they m
ue to variations in fiber type between the muscle group

DISCUSSION

We find it encouraging that in the wide variety of spec
hapes and distributions studied, BSD was able to find
olutions while using only minor constraints. For the 5-
atabolism, PCA was used previously to obtain the s
esults; however, the PCA basis shapes are orthogona
enerally requiread hoc transformations to reconstruct t
pectral shapes. These spectral shapes are then used to
ine the amplitude distribution. In contrast, BSD autom

ally determines the spectral shape and the amplitude for
nd FBAL, removing the time necessary to reconstruct
pectral shapes and removing the uncertainty involved in
nal result.
While the efficiency of automatic recovery of basis spe

s useful, BSD demonstrates its real power on the larger
ore complex datasets. In the case of the head data, the
nalysis becomes more difficult. There is a problem of uni
ess in the transformation of the orthogonal shapes back
pectral shapes which is not present for BSD, which is ab
etermine the spectral shapes and their distribution dire
urthermore, in the case of the head, there is an additi
athematicallypossible solution which can be discarded ba
n our detailed physiological knowledge. The fact that B
nds this solution demonstrates one of its great strengths:
s not constrained by our preconceived ideas on what it sh
nd, which allows us to more fully explore the realm
ossible solutions, discarding those we can, but retainin
thers for further exploration.
For the calf musle, BSD offers the only method for rec

ring the strongly overlapping spectral shapes. In this
CA calculates three orthogonal shapes which permit too m

The J Couplings, Shifts, and pH Values (from Pi Peak Position)
or the Three Reconstructed Spectral Shapes in Human Calf

usclea

Shape 1 Shape 2 Shape 3

ATP J coupling 18.3 Hz 18.6 Hz 15.1 Hz
ATP J coupling 16.1 Hz 16.4 Hz 15.9 Hz 60.5 Hz
ATP J coupling 17.3 Hz 17.3 Hz 16.0 Hz
ATP shift 24.87 ppm 24.85 ppm 24.91 ppm 60.04 ppm
ATP shift 29.94 ppm 29.96 ppm 210.06 ppm PCR at
ATP shift 218.40 ppm 218.44 ppm 218.57 ppm 22.52 ppm
H 7.03 7.11 7.09 60.02

a Key differences are shown in bold text.
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hree orthogonal components clearly indicate the presen
ifferences within the muscle spectra at a level of a few pe
f the total signal, interpretation of these differences with

he unique reconstruction provided only by BSD is virtu
mpossible. Since BSD reconstructs the actual spectral s
s well as their amplitudes, it becomes possible to interpre
esults in terms of different physical conditions. From
pectral shapes and distributions, it is clear that the calf m
ontains distinct spectral signatures, roughly aligned with
uscle groups. These signatures are present as mixtures

he individual muscles, with some types stronger withi
iven muscle than other types. For such a case with varia
t only a few percent, BSD is the only method that we h

ound with a demonstrated ability to reconstruct true spe
hapes and distributions, thereby allowing analysis of
hysical quantities.
These results show several of the strengths of BSD.

hrough the direct sampling of the actual posterior distribu
SD determines not only the mean results, but also the
ncertainties at each spectral point and amplitude. Some
ds give uncertainty estimates by treating the distributio
olutions as Gaussian. This is highly unlikely to be t
aking such estimates inaccurate and potentially mislea
econd, methods which find solutions by inversion (suc
FT procedures) are prone to artifacts in sparsely sample
uch as those shown. BSD, on the other hand, creates po
olutions out of the vacuum and tests them against the
liminating such artifacts. Third, BSD identifies mathem
ally possible solutions. Thus, when real multiple solutions
ossible, they are found. Often these additional solutions
e ruled outa posteriori, as in the case of the head da
owever, if the multiple solutions were all physically possi

hen it is really not possible to decide on a “best” solution
single solution in a case like this were, in fact, determine
ny method, it would be extremely misleading. In contras
roviding these multiple possible solutions BSD can g

urther experimentation, allowing the discovery of corr
nique solutions when further constraints or data become a
ble. Fourth, by determining both the spectral shapes and

ractional distribution within the voxels, BSD allows a mu
urer reconstruction of the spectra associated with under

issue which is not spatially resolved than any other met
inally, BSD avoids biasing the results in any way. BSD o
knows” the number of underlying spectra to look for and
o preference for one spectral shape over another.
In order to constrain the solution space adequately for

o find acceptable solutions, certain limitations must be

FIG. 10. CSI dataset (156 spectra from 2 axial slices of human calf m
ith a box indicating the location of the spectra shown in (b). (b)31P spectra
6 amplitude distribution is shown for the three reconstructed spectral
lthough 163 16 voxels are shown, the dataset does not include vo

econstructed spectral shapes are shown, numbered from top to bottom
ummary of the peak locations and the differences between spectra.
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hich limits the solution space to the positive hyperquad
ortunately, this restriction is not terribly onerous, since

ype of distribution can represent many physical proble
econd, it is necessary for the data to overdetermine
olutions, since Eq. [1] is degenerate in general. The degr
verdetermination necessary is likely to depend on the
uency overlap of the spectral shapes in the problem, sinc
pectra in solution space can then easily exchange flux
alf muscle and simulation results show that for reconstru
f 3 strongly overlapping spectral shapes and their ampl
istributions, 100 spectra are adequate and probably
xcessive at reasonable SNR.

CONCLUSIONS

While a number of Bayesian methods, usually coupled
ingle value decomposition procedures, have been introd
o solve various bilinear problems, the results have not pr
he usefulness of adding the computationally intensive Ba
an algorithms. The work presented here dramatically dem
trates the power of Bayesian methods to improve analys
ilinear systems. Bayesian spectral decomposition operat

he simple principle that by exploring the space of all poss
olutions, equivalent to the phase space of statistical me
cs, while remaining cognizant of additional prior knowled
he “best” answer together with its uncertainties must be
esult. Powerful computers have finally made possible
ealization of Bayes’ original idea—by simply “doing sum
ver a probability distribution, you obtain the correct answ
athematically, we are simply asking at each point what is

ikely step to take in order to find the maximum of the nea
oints. Then we sum up the results as we wander in this s
nd we obtain the desired result. People seeing this meth

he first time are often astounded by the results, since they
rom an apparently trivial statement (Eq. [2]). This is
eauty of the mathematics and the method—do the
orrectly and the correct answermustresult.
The analyses of the three datasets presented here d

trate that this simple concept has great power and off
ew tool for analysis of bilinear problems in a number
elds. In spectral analysis, time series analysis, and ec
etrics, the data often take the form of a bilinear distr

ion which may be amenable to analysis by BSD. Prese
e are exploring a number of extensions to our orig
ork, including modification of the prior for the mixin
atrix to take into account local correlations, methods to

he flux scale in the two domains independent of sca

le): (a) One1H image is shown with the 163 16 overlay for the CSI voxels togeth
the region outlined in (a) are shown (25 of 156 spectra shown). (c) Th3

pes. At the top is shape 1, in the middle is shape 2, and at the bottom3.
outside the leg, so these are automatically set to zero amplitude. (d
aussian lineshapes with widths of 5 points were used by BSD. See T
usc
from
sha
xels

. G
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llow the width to vary throughout the dataset which sho
e of use in mass spectrometry, and the application of

o other fields.
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