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A frequent problem in analysis is the need to find two matrices,
closely related to the underlying measurement process, which
when multiplied together reproduce the matrix of data points.
Such problems arise throughout science, for example, in imaging
where both the calibration of the sensor and the true scene may be
unknown and in localized spectroscopy where multiple compo-
nents may be present in varying amounts in any spectrum. Since
both matrices are unknown, such a decomposition is a bilinear
problem. We report here a solution to this problem for the case in
which the decomposition results in matrices with elements drawn
from positive additive distributions. We demonstrate the power of
the methodology on chemical shift images (CSI). The new method,
Bayesian spectral decomposition (BSD), reduces the CSI data to a
small number of basis spectra together with their localized ampli-
tudes. We apply this new algorithm to a **F nonlocalized study of
the catabolism of 5-fluorouracil in human liver, *P CSI studies of
a human head and calf muscle, and simulations which show its
strengths and limitations. In all cases, the dataset, viewed as a
matrix with rows containing the individual NMR spectra, results
from the multiplication of a matrix of generally nonorthogonal
basis spectra (the spectral matrix) by a matrix of the amplitudes of
each basis spectrum in the the individual voxels (the amplitude
matrix). The results show that BSD can simultaneously determine
both the basis spectra and their distribution. In principle, BSD
should solve this bilinear problem for any dataset which results
from multiplication of matrices representing positive additive dis-
tributions if the data overdetermine the solutions. © 1999 Academic
Press
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INTRODUCTION

making varying contributions to individual voxels. We are
interested in how the CSI dataset can be decomposed into t
spatial distributions of the spectra of the different tissue type:
Since we know neither the spectra nor their spatial distribu
tions, we must solve a bilinear problem in order to determin
them simultaneously. Most traditional methods of data analys
(e.g., Fourier transformation, least squares fitting) cannot dt
compose the data in this way, but simply estimate the individ
ual spectra (or their properties) in each voxel with no attemg
to determine their interrelationship.

In a general bilinear problem, the data matrix, can be
considered as a series Mfvectors taken fronR", yielding an
M X N matrix. The problem is to obtain both the matrix of
K(K < M, N) often nonorthogonal, basis vectoF§,K X N)
(here the spectral shapes), and a mixing ma#{y X K),
which gives the amount of each basis vector in the actual dat
The data is then related to the model through a matrix multi
plication,

D = AF. [1]

This is similar to a standard “inverse” problem except that ir
the “inverse” case one of the matrices is known, and thus lea
squares methods can be used to find the matrix which min
mizes the residuals between the reconstruction and the da
With neither A nor F known (even ifK is only 2 or 3), the

problem is much more difficult. Since the number of possible
solutions is very large and there is no analytical method t
identify them, we use the Markov chain Monte Carlo proce:
dure (MCMC) to sample the space of possible solutions t

A common need in the analysis of the large datasets fougigtermine its properties. MCMC is a technique derived fron
in chemical shift imaging (CSI) and many other fields is thetatistical mechanics, where it has been used for more than
reduction of the very large amount of information contained ears to explore the solution spaces associated with distrib
the data to a manageable size. For example, in a CSI exafffins of interacting molecules or spins. Since MCMC algo-
nation 512 spectra of 512 points are usually acquired. Whiléhms directly sample the solution space, uncertainty estimat
many of these spectra contain nothing but noise, typically thekee determined simultaneously with a “best” solution. Furthel
are still hundreds of spectra to analyze. These spectra are raffelffe data support them, multiple solutions are possible. The
completely independent of one another but rather are a mixt@eplication to stochastic image processes was initially demol
of a handful of spectra coming from different tissue typesirated by Geman and Gemat),(leading to exploration of a
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wide variety of sampling procedure2-4) for solution of
imaging problems, reviewed by Besagal. (5).
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MCMC techniques require relative probability measureshange in flux in eitheA or F requires that the other matrix be
ments at each sampled point in the solution space, which w@nstantly updated, which is discussed in detail below.
provide through a Bayesian approach. In the past decadé&ome discussion about the choice of prior is necessary, sin
Bayesian methods using MCMC techniques have been usedhis is the area in which most of the controversies abot
a wide variety of problems in data analysis, e.g., medicBhyesian techniques arise. The objective is to use the mc
imaging, agricultural field studies, population studies, and eogeneral possible arguments to determine a form of the pric
nomic forecasting@—10. Bayesian statistical analysis startshat is appropriate to the general character of the problem und

with the apparently trivial statement, consideration with only a few adjustable parameters. Sinc
BSD is to reconstruct spectral shapes (known to contain fairl
p(M, D) = p(M|D)p(D) = p(D|M) p(M) 2] sharp lines) and spatial distributions (essentially images), usir

the atomic prior from Massive Inference is appropriate. Ar
atomic prior represents the model as a few point fluxes (atom
ith the highest probability assigned to the distribution with
the fewest atoms. It contains only two adjustable parameter
the average strength (flux) of the atoms and the probability c
finding an atom. Both are adjusted by the program to match tf

: . X SRV data. This prior follows naturally from general divisibility
is the probability of the model (therior). The posterior distribu- rguments 11), and thus is widely applicable. For example, it
tion is the solution space for our problem, since it measures @Wg ’

. o ould also be effective in describing systems where the si
probability of the present model (sample) in light of the dat"i’rals arise from discrete objects (e.g., photons striking a ph
Rearrangement of Eq. [2] yields the posterior,

tographic plate, nuclei undergoing spin flips).
Once the prior is chosen, the remainder of the problem i
p(D[M) p(M) straightforward, although a number of features have been added
p(D) ' 8] BsD to improve efficiency. BSD starts the Markov chain at &
point in the posterior distribution representing a completely fla

which provides the MCMC algorithm with the needed prob:{mdel containing a reconstructed flux equal to the flux in the dat:
bilities in the solution space for the problem. Since the evﬁrJ this way the sampler starts nearer the region of high probabili

dence,p(D), usually acts as a scaling parameter, it can ile avoiding any initial bias on expected spectral shapes ¢

ignored in this case since MCMC only needs relative probgl_stributions. The likelihood is calculated using the sum of the
int in theduares of the residuals normalized by the standard deviatjon,

g§f the noise in the spectral data, i.e., a normaligédistribution.

solution space is determined completely by the likelihoo
which is ergsily determined by compapring t)r:e r¥1odel to the da{gather than perform a full likelihood calculation for each move-
ent of the Markov chain, the change in the likelihood is calcu

and the prior, which is the probability of the model indepen- - . oo
prior, which | P " indep ri%ed for the specific change in the model, so that the likelihoo

dent of the data. The prior encodes any knowledge of t . L . .
solution independent of the data. For example, a prior for®q" be updated incrementally. The likelihobdcan be written in

system reconstructing spectra might give higher probability pgatrix notation as
a narrow spike than to a flat offset.

wherep(M, D) is the probability of both the model and the dat
(thejoint probability distributior), p(M|D) is the conditional prob-
ability of the model given the data (theosteriop, p(D) is the
probability of the data (thevidencg p(D|M) is the conditional
probability of the data given the model (thieelihood), andp(M)

p(M[D) =

Pu_tt_ing in the matrices andF for the model leads tp_ the L= iz TI[(AF — D) "(AF — D)]. 5]
specific form of Bayes’ equation (Eq. [3]) for the bilinear 20
problem,

where AT represents the transpose Afand Tr indicates the
trace of the quantity in the brackets. Then the behavior of th
A, F|ID D|A, F)p(A, F). 4 , o . .
Pl D) = p(D] Pl ) 4] change in the likelihoodAL, can be derived by looking at the

effect of adding a small amount of flugF, to the model. By

The sampling from the posterior distribution and the enCOd"?HsertingF + F for F in Eq. [5] and subtracting Eq. [5] from
of the prior are done using a heavily modified version of thes result the change in likelihood for a changeFifis
Massive Inference Gibbs sampler from MaxEnt Solutions Ltd., '

Cambridge, England, which also enforces positivity on the
solutions. The primary modifications revolve around how the AL(8F) = 552
likelihood changes as the MCMC samples the solution space. a

The original Massive Inference system handled systems where (ASF)T(AF — D)

A in Eq. [1] is a known constant matrix, which makes the { + (AF — D)TASF + (AS8F)T(ASF) ] . [6]
change in the likelihood dependent only on a chandeg,ifF.

WhenA is treated as a variable matrix on the same footing as

F, the calculations of the change in the likelihood with ahere it is assumed that only changesRoare made. The
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coding is made more efficient by maintaining a mismatcteveral differenK values. The data, the number of shapes, th
vector which measures the misfit between the data and gtandard deviation of the noise, and the linewidth are fed int

reconstruction from the model, i.e., BSD together with the number of iterations desired. These a
the only inputs that BSD requires to operate. During samplin
M =D — AF. [71 BSDis free to exchange flux between thandF domains, so

the individual samples are scaled prior to averaging. BSD i
ag_enerally run using several different Markov chains in order t
é/erify the results, as MCMC techniques have no establishe
c%nvergence criteria. Since BSD samples the solution spac
the output includes not only a mean solution but also unce
tainty estimates at each spectral point as well as at ea
amplitude in the mixing matrix. If there are multiple possible
AM =D — A&F, (8] solutions, BSD will find these as well. The power of the BSD
algorithm is demonstrated on a series of increasingly comple
where only the affected components Mf must be updated. datasets below.
Equations [6] and [8] have similar forms for changes in the

A great increase in calculational efficiency is gained by upd
ing the mismatch vector incrementally after each Markov st
just as the likelihood is incremented. For added fii M
changes by

model forA. In order to simplify the calculations, we do not RESULTS
allow simultaneous changes A andF, since allowing such
changes would require evaluation of terms involviswyoF. A straightforward example of the operation of BSD is pre-

Note that barring such changes does not prevent the systented in Fig. 1 with a study of the catabolism of 5-fluorouraci
from reaching any state and should have no effect on the fir§aFU) to a-fluoro-B-alanine (FBAL) in human liver during
result, since the sampler can mo®€ followed by 6A and chemotherapeutic treatmert4j. PCA was used to remove
reach the same point. As long as detailed balance is masmall frequency offsets in the individual spectra (Fig. 1a) an
tained, the sampler still samples the space correctly. At eaochdetermine that two orthogonal components adequately d
step of the Markov chain, the program calculates the changesiribed the data. The BSD algorithm was told to search for tw
the likelihood using Eqg. [6] and determines whether to mowpectral shapes. These shapes and their amplitudes are she
by comparing this with a randomly generated value. If the stép Figs. 1b and 1c. Repeating the analysis with four differen
is taken, the likelihood and the mismatch vector are updatesteds and thus four different Markov chains generated identic
MCMC samplers require a “burn-in” time to reach an area @ésults (not shown). Note that the fluctuations in amplitude i
high probability which is suitable for sampling. The samplefig. 1b are not due to the MCMC procedure but reflect the
runs for an operator-specified time without recording samplastual variations in the data in Fig. 1a. The time constant of th
and then continues while recording for a further number @kponential fit shown in Fig. 1d is 7.6i° minutes (95%
steps specified by the operator. confidence levels) for the decline of 5-FU, in agreement wit}
A final modification was made to BSD in order to more fullypreviously published results obtained using PQA)( In this
represent the physical world in the models. AtomsFirare case BSD took less than 7 min on an Apple PowerBoo
given a Gaussian lineshape with a width defined by the op&400/200 running the application compiled using Metrowerk:
ator, which is generally the natural width of the problemCodewarrior C and sampling 10,000 points from the posteric
usually directly measurable from the narrowest line in thdistribution. Increasing the sampling to 20,000 points did no
spectrum. For the mixing matrixy, a priori knowledge of the change the result, demonstrating that the sampling he
absence of material is sometimes available, so the operator @sbieved equilibrium. Note that while the previous analysis b
has the option of specifying a certain number of zeros in ohé et al. requiredad hoctransformation of the PCA compo-
solution component in th& matrix. For strongly overlapping nents to reconstruct the 5-FU and FBAL spectra, these spect
spectra, especially when a single line is dominate in one of thleapes were determined automatically by BSD. The recol
underlying spectra, as in the CSI study of the human hesattucted spectral shapes clearly show the power of the ator
presented below, it greatly improves efficiency to add saichprior, which encourages noise in the spectra to be reduced
priori knowledge of the distribution of signals. the baseline, while maintaining features which are slightly
The operation of BSD on CSI and multispectral datasetsabove the noise. The small peak on the shoulder of FBAL i
straightforward. First, principal component analysis (PCA) i8ig. 1c can be seen in the data in Fig. 1a; however, a datas
used to correct the data for instrumentally induced frequenagth better SNR would be required to confirm its presence.
and phase shifts as described previoudly, 3. PCA is then A more complex decomposition problem is shown in Fig. 2
applied to the corrected data to determine the number THiis is a dataset comprising 258 decoupled®P spectra of
independent spectral shap#sin Eq. [1], needed in the model typical peak signal-to-noise ratio (SNR) of approximately 6
to reconstruct the data. Generally it is obvious from the PCPhese spectra were selected by choosing axial slices wi
results how many independent shapes are present in the dsignal from 512 spectra (8 8 X 8 voxels) obtained by spatial
However, if there is any uncertainty, BSD can be run withnd time FFT of CSI data acquired from a volunteer’s head &
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described elsewheréf). The low SNR of the spectra (typicalalpha workstation with sampling of 50,000 points from the
for such studies), 64 of which are shown in Fig. 2a togethposterior distribution following 24,000 iterations to allow
with the corresponding proton image in Fig. 2b, make #&quilibration.
virtually impossible to study individual peaks. PCA was again In order to explore the meaning of these multiple solution:
used to align the spectra on the PCr peak. The PCA analysiere fully, we generated a dataset composed of 100 da
determined that two components adequately described 8pectra of 300 points each with strongly overlapping peak:
dataset so BSD was run looking for two spectral shapes agdch spectrum in the data was a mixture of three basis spect
their distributions. Figure 2c shows the resulting reconstructedhich were modeled on typical muscle spectra containin
amplitude distributions on the same scale for comparissmall pH differences and small coupling and ATP shift
while Fig. 2d shows the underlying spectral shapes, whiclifferences. The basis spectra together with their distributior
were reconstructed using Gaussian lineshapes with widthsaoé shown in Figs. 5a and 5b, respectively. The individual bas
5.7 points. The reconstructed spectral shapes are clearly idgmectra contain 10 spectral lines, each with a Gaussian lin
tifiable as characteristic of muscle tissue and of brain tissighape of width 2.2 points. Random Gaussian noise was the
The brain spectrum shows large phosphodiester and phosphaded to each data spectrum at different levels and BSD w:
monoester (PME) peaks, the expected brAd P resonance told to search for three basis spectra using a number of diffe
arising from exchange between free and ATP-bound magrest Markov chains.
sium, and the typicgBATP frequency shift indicating a lower The picture which emerges from these simulations is on
free Mg®™ concentration than in muscld®). The amplitudes where BSD reliably finds the expected solution in cases whel
show the muscle localized on the edge of the skull and at ttiee SNR is high, but as the noise level increases it finds thi
occipital lobes as expected, while the brain is internal to tls®lution only part of the time. In Fig. 6, sample spectra of the
muscle signal. Since the reconstructed spectra result fralata for each noise level are shown. The differences betwe
fitting the model to 256 data spectra, there is a dramatite simulated basis spectral shapes are primarily in the Pi al
improvement in the SNR over the unprocessed data. ATP peaks. The maximum SNRs used in the simulations fc
This case demonstrates some of the complexity of thisese peaks in the data are 8, 6, 4, and 2 for ATP and 16, 1
procedure since the solution in Fig. 2 was only one of ti& and 4 for Pi. Figure 7 shows the two solution types found il
possible solutions found by the BSD procedure. This solutidhe case of the highest SNR. As can be seen, they are alm
resulted when 12 zeros were set in the amplitude of ofdentical. The spectral shapes shown in Fig. 7a show son
spectral shape deep inside the head, which had the effectrofor crosstalk between the basis spectra in the ATP regions
forcing that region to be represented by only the “brairthe second and third spectra leading to small peaks around t
spectral shape. In addition to this solution, BSD found solexpected larger peaks. The uncertainties calculated by BSD f
tions with a “brain” spectrum with either half or almost no PCthese peaks are roughly half their peak amplitude, indicatin
when run with no forced zeros. The fit to the data was préiat they are not well supported by the data (typical pea
served by adding a fraction (typically 10%) of the “muscletincertainties claimed by BSD in these spectra are at the 15
spectral shape into the brain region (see Fig. 3 for an extretegel while they are at the 5% level in the Fig. 7b solution).
example). In fact, Fig. 4 shows plots of the data, reconstruseth solutions (Figs. 7a and 7b) show the correct larger peal
tions from the models, and residuals for both cases. There isawnpared to the true basis spectra with the correct relationshi
perceivable difference in the residuals, indicating that therebstween Pi and ATP shifts aridcouplings. As the noise level
no support for one solution over the other in the data itsel§ increased, BSD begins to find other possible solutions. At tr
Since BSD samples the solution space directly, it finds sushcond highest noise level, 20% of the time (2 out of 1(
mathematically possible solutions, which can be helpful whéviarkov chains), BSD returns a solution (Fig. 8) which strongly
the physical situation is not as well determined as here. Thigxes the three basis spectral shapes to form a solution whi
second, nonphysical solution could be excludgibsterioriby has fewer atoms (thus a higher prior probability) while havinc
noting that the brain does not contain muscle tissue jriori  a highery?® (thus a lower likelihood). The reconstructed mod-
by forcing a solution to have zero amplitude deep in the braiel’s fit to the data is poorer as measured by a root mean squiz
Thea priori approach is computationally more efficient, sinceesidual misfit in the amplitudes, which is more than twice the
it does not require many different Markov chains to obtaisize of the correct case. However, as Fig. 9 shows, the residu
physically significant results. Both BSD analyses on the 256 the reconstruction compared to the data appear equal
spectra of 369 points took rough® h on a 600 MHzDigital uniform. As the noise increases this solution is seen mor

FIG. 1. Time series data for the catabolism of 5-FU to FBAL: (a) The data contain 51 points extracted from 30 1-min, nonlGald& spectra with
peak SNR~ 7 acquired over 30 min following rapid (1-min) bolus injection of 5-FU. The time series runs from top to bottom and the locations of the &
and FBAL peaks are shown. (b) The amplitudes of the two underlying spectral shapes within the data determined by BSD. The time axis runs from 1 to
(c) The two underlying spectral shapes determined by BSD. At top is the 5-FU spectrum; at bottom is the FBAL spectrum with the RF carrier showing
middle. (d) An exponential fit by regression analysis to the decay of the amplitude of the 5-FU signal. A time constant of 7:61.8@A-(.27 min at 95
confidence) was determined.
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FIG.3. Second solution for head data with no zeros set in the brain tissue. (a) Amplitude distributions for two solutions, again on the same scalenTop
is “muscle-like”; however, it now encroaches into the brain tissue region. (b) Spectra corresponding to the distributions with linewidthsrat %3 ipokig.
2. The spectra are similar except that the “brain-like” spectrum has lost its PCr, whigAfife and PME regions are mixed between the two solutions.

often, so that at the third level of SNR (ATP maximum SNR of These datasets also allowed a test of the effect of increas
4), only one-third (7 out of 20 Markov chains) of solutions arequilibration and sampling times on the residuals. For th
the correct solution. Finally, in the analysis of the dataset witlighest SNR case, we took the two solution types and ran tt
the lowest SNR, the prior probability dominates the solutiomiata through BSD for a variety of sampling periods. The dat
space, and BSD prefers to fit the data with two basis spectasé summarized in Table 1, which shows that the sample
shapes to reduce the number of atoms. These results reflects@itties down at different rates in different situations. The mode
general pattern seen in this type of Bayesian analysis, in whiefth the smaller misfit essentially is close to its best possible f
the prior becomes more and more dominant as the informatiaithin only 20,000 samples (after 11,000 equilibration steps)
content in the data diminishes. while the second model requires roughly 50,000 samples (aft

FIG. 2. CSldataset (8< 8 X 4 voxels of 22 crm each) from the human head of a normal volunteer™@)spectra from a single axial slice; 64 of 256 total
spectra shown. (b) The correspondiktimage centered axially on the region of the voxels. (c) The@amplitude distributions are shown with slight Gaussian
blurs applied to make the distributions easier to see. The intensity scale is the same in both distributions to aid in comparison. At top istiba tisttiteu
spectral shape characteristic of muscle tissue, while at the bottom is the distribution for the spectral shape characteristic of brain tissoe.igdhét
reconstructed spectral shape associated with muscle which shows@EPplines centered at-18.62 ppm with PCr set at2.52 ppm. At bottom is the
reconstructed spectral shape associated with brain which sBAWB centered at-18.92 ppm with PCr set at2.52 ppm. The lineshape used by BSD was
Gaussian with width 5.7 points.
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FIG. 4. Plots of full datasets, reconstructions, and residuals for head data: Each plot contains 256 spectra of 369 points each shown from left t@right
with an average across all the spectra at the far right. (a) and (b) The input datasets (identical to each other) with the low SNR and large varations ¢
(c) Reconstruction from the solution shown in Fig. 2. (d) Reconstruction from the solution shown in Fig. 3. (e) Residual)(epr the reconstruction in
(c). (f) Residuals, (b)- (d), for reconstruction in (d).

24,000 equilibration steps) to reach its best fit. The use sblutions are not equilibrated, they will show different results
multiple Markov chains also aids in determining if adequater different Markov chains.
equilibration and sampling time was allowed, since if the We also wished to look at failure modes in BSD. We
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FIG.5. Model spectra and distributions: (a) Three model spectra showing shifts of peaks between them. (b) Amplitude distributions for spectra,nop sy
goes with left distribution, middle spectrum with middle distribution, bottom spectrum with right distribution.

discovered that if we put in incorrect linewidths, BSD stilships) so that BSD indicates to the user that there is a proble
finds the correct solution as often as with the correct linewidtm the model. If BSD is told to seek more than the correc
as long as the real linewidth is larger than the linewidth used bymber of solutions, the case is more complicated. Many time
BSD; however, the normalizeg’ value is higher than ex- we have seen BSD find one solution of the set with either
pected. If the linewidth is too wide, however, BSD returngero solution (flat spectral shape with no amplitude) or :
spectra which are not realistic (incorrect frequency relationonphysical solution with a few random spikes in the spectre
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FIG. 6. Sample data spectra from model in Fig. 5 together with Gaussian noise: (a) Peak SNR of 8 for ATP peaks. (b) Peak SNR of 6 for ATP pes
Peak SNR of 4 for ATP peaks. (d) Peak SNR of 2 for ATP peaks.

shape and very low amplitude. However, in cases of high SNRe mean model and the standard deviations of the points in tl
and strongly overlapping spectral shapes, it can create randel. In the bilinear case, these uncertainties are more col
additional solution. This shows the importance of having grlex than for a Markov chain in a linear system. In a bilineau
independent procedure (PCA) which can be used in casgstem there is the possibility of correlated uncertainties be
where there is extreme overlap in the basis vectors. If too féween the two domaing) andF. In our specific instance this
solutions are sought, BSD is unable to return a reasonalecompounded by the treatment of an atonkias a spectral
normalizedy” value. line, which effectively means an atom knis distributed over
During sampling, BSD also gathers statistical data on timeany points while an atom ii is not. In order to test the
distribution of the possible models, which allows it to give bothincertainties, we ran the high SNR dataset first with the corre
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FIG. 7. Two solutions found by BSD for highest SNR case: (a) First solution with higher root mean square misfit to the known distributions. (b) Se
solution with lower root mean square misfit to the known distributions.
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FIG. 8. “Bad” solution found in second highest SNR case: The root mean square misfit to the known distribution is roughly twice that for the “good” solu

linewidth and then with no linewidth (effectively treating eacltonverted to a linewidth than to a single point (standard dev
point in the spectra independently). The uncertainties summatibn of 8.5X 10 vs 1.4X 10°%). This leads to the sampler
over all points inA and F are summarized in Table 2. Herepossibly underestimating uncertainties for the peak heights
there is a clear better overall fit to the spectra when atorks irthe spectral shapes and overestimating them for the amplitud
are given a lineshape, but this results in slightly poorer fA.in in the mixing matrix, which indicates that running multiple
Also, the calculated standard deviations show that the samplésirkov chains may be a better way to estimate uncertainties
is more tightly locked into the spectral shapes when an atontle bilinear case.

b
T
i rr 1““ VL
L) ""W ’ ‘k""'\*:«h'i‘!ﬁ‘?\%' i

FIG. 9. Residual plots between the data and the reconstruction for solutions at second highest SNR ratio: (a) Plot for “good” solution. (b) Plot for
solution.
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TABLE 1 TABLE 3
Root Mean Square Deviations from the Known Amplitudes The J Couplings, Shifts, and pH Values (from Pi Peak Position)
for the Solutions Shown in Fig. 7 for the Three Reconstructed Spectral Shapes in Human Calf
Muscle®
First solution Second solution
Number of amplitude misfit amplitude misfit Shape 1 Shape 2 Shape 3
samples (Fig. 7a) (Fig. 7b)
yATP J coupling 18.3 Hz 18.6 Hz 15.1 Hz
5,000 79 aATP J coupling 16.1 Hz 16.4 Hz 159 Hz =*0.5Hz
10,000 187 77 BATP J coupling 17.3 Hz 17.3 Hz 16.0 Hz
20,000 139 71 YATP shift —4.87 ppm —4.85ppm —4.91 ppm =*0.04 ppm
30,000 133 67 «ATP shift —9.94 ppm —9.96 ppm —10.06 ppm PCR at
50,000 114 67 BATP shift —18.40 ppm —18.44 ppm -—18.57 ppm —2.52 ppm
75.000 119 _ pH 7.03 7.11 7.09 +0.02

# Key differences are shown in bold text.

One final example is a CSI dataset from human calf muscle.

The dataset was gathered as aX122 X 8 set, zerofilled, and The second shape is strongest in a ring along the outer edge
Fourier transformed to 18 16 X 8 voxels as descibed for8  the calf muscle. Initial results on other individuals indicate tha
8 X 8 datasets previousi{). Using the proton image, 156 the spectral shapes are consistent across individuals while th
spectra out of 2048 were selected for being within the leg in tgstributions show some variations. The origin of these differ
two axial slices showing the largest cross-section of calf musnces is not clear; however, it seems plausible that they may

cle in the proton image. PCA was used to align the 156 daf@e to variations in fiber type between the muscle groups.
spectra on the PCr frequency. Further PCA showed that there

were three components in the data with very large frequency
overlap among them. In Fig. 10a, one of the two axial slices DISCUSSION
from the calf muscle is shown, with a sample of the CSlI
data in figure 10b. The data are of high SNR; however, thereWe find it encouraging that in the wide variety of spectral
are no clear differences between them on initial inspectiop}@Pes and distributions studied, BSD was able to find goc
Figures 10c and 10d show the BSD results for amp”tu(%)lutions while using only minor constraints. For the 5-FU
distribution and spectral shape, respectively. The results areCafgPolism, PCA was used previously to obtain the sam
average of 50,000 samples from the posterior distributiégSults; however, the PCA basis shapes are orthogonal a
following 25,000 steps of equilibration, which required apgenerally requiread hoc transformations to reconstruct the
proximately 14 h on a Digital UNIX workstation with a goospectral shapes. These spectral shapes are then used to de
MHz alpha processor. mine the amplitude distribution. In contrast, BSD automati
A summary of the differences between the spectra is givgﬁlly determines the spectral shape and the amplitude for 5-F
in Table 3 and shows that there are three distinct signals arisff}fl FBAL, removing the time necessary to reconstruct th
from the calf muscle. The first and second spectral shapes gpgctral shapes and removing the uncertainty involved in tf
similar, except for differences in pH. The third spectral shag&al result.
shows a smalleyATP splitting due taJ coupling and a higher While the efficiency of automatic recovery of basis spectr:
BATP shift. In addition to their spectral differences, the conis useful, BSD demonstrates its real power on the larger ar
ponents have different spatial distributions within the caloreé complex datasets. In the case of the head data, the Pt
muscle as shown in Fig. 10c. The third shape is stronger in th@alysis becomes more difficult. There is a problem of unique

posterior of the calf, while the first is stronger in the anteriof€Ss in the transformation of the orthogonal shapes back in
spectral shapes which is not present for BSD, which is able t

determine the spectral shapes and their distribution directl

TABLE 2 Furthermore, in the case of the head, there is an addition:

The Misfit to the Known Input for the Highest SNR Simulation  mathematicallypossible solution which can be discarded base!

Averaged over the Entire Dataset of Mean Amplitude 7754 and  on our detailed physiological knowledge. The fact that BSL

Mean Spectral Peak Height 3.33 x 107, Including the Estimates  fings this solution demonstrates one of its great strengths: BS

from BSD for the Standard Deviations is not constrained by our preconceived ideas on what it shou

Amplitude  Amplitude find, .which al'lows us to more fully explore the reglm of

Linewidth RMS misfit  avg. std.  Spectra RMS  Spectra avg. POSSible solutions, discarding those we can, but retaining tt
(points) actual dev. BSD  misfit actual  std. dev. BSD others for further exploration.

For the calf musle, BSD offers the only method for recov-

ering the strongly overlapping spectral shapes. In this cas

PCA calculates three orthogonal shapes which permit too ma

1 56 564 179 10°  1.43x 10
7 (0 = 1.1) 66 690 1.5 10°  8.47x10°
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possible reconstructions into spectral shapes. Although thieed. First, the model must be a positive additive distribution
three orthogonal components clearly indicate the presencewdfich limits the solution space to the positive hyperquadran
differences within the muscle spectra at a level of a few percdfdrtunately, this restriction is not terribly onerous, since thi
of the total signal, interpretation of these differences withotype of distribution can represent many physical problems
the unique reconstruction provided only by BSD is virtuallfsecond, it is necessary for the data to overdetermine tt
impossible. Since BSD reconstructs the actual spectral shapekitions, since Eq. [1] is degenerate in general. The degree
as well as their amplitudes, it becomes possible to interpret theerdetermination necessary is likely to depend on the fre
results in terms of different physical conditions. From thquency overlap of the spectral shapes in the problem, since t
spectral shapes and distributions, it is clear that the calf mussfgectra in solution space can then easily exchange flux. Tl
contains distinct spectral signatures, roughly aligned with tlealf muscle and simulation results show that for reconstructio
muscle groups. These signatures are present as mixtures witfi strongly overlapping spectral shapes and their amplituc
the individual muscles, with some types stronger within distributions, 100 spectra are adequate and probably evi
given muscle than other types. For such a case with variatiansessive at reasonable SNR.

at only a few percent, BSD is the only method that we have

found with a demonstrated ability to reconstruct true spectral CONCLUSIONS
shapes and distributions, thereby allowing analysis of their
physical quantities. While a number of Bayesian methods, usually coupled witl

These results show several of the strengths of BSD. Firsingle value decomposition procedures, have been introduc
through the direct sampling of the actual posterior distributiotg solve various bilinear problems, the results have not prove
BSD determines not only the mean results, but also the trile usefulness of adding the computationally intensive Baye
uncertainties at each spectral point and amplitude. Some me#m algorithms. The work presented here dramatically demot
ods give uncertainty estimates by treating the distribution sfrates the power of Bayesian methods to improve analysis
solutions as Gaussian. This is highly unlikely to be trudilinear systems. Bayesian spectral decomposition operates
making such estimates inaccurate and potentially misleadintige simple principle that by exploring the space of all possibl
Second, methods which find solutions by inversion (such aslutions, equivalent to the phase space of statistical meche
FFT procedures) are prone to artifacts in sparsely sampled se$s while remaining cognizant of additional prior knowledge,
such as those shown. BSD, on the other hand, creates possiite“best” answer together with its uncertainties must be th
solutions out of the vacuum and tests them against the datsult. Powerful computers have finally made possible th
eliminating such artifacts. Third, BSD identifies mathematiealization of Bayes’ original idea—by simply “doing sums”
cally possible solutions. Thus, when real multiple solutions aower a probability distribution, you obtain the correct answer
possible, they are found. Often these additional solutions celmthematically, we are simply asking at each point what is th
be ruled outa posteriori, as in the case of the head datalikely step to take in order to find the maximum of the nearby
However, if the multiple solutions were all physically possiblepoints. Then we sum up the results as we wander in this spa
then it is really not possible to decide on a “best” solution. ind we obtain the desired result. People seeing this method
a single solution in a case like this were, in fact, determined lbiye first time are often astounded by the results, since they flo
any method, it would be extremely misleading. In contrast, iypom an apparently trivial statement (Eq. [2]). This is the
providing these multiple possible solutions BSD can guideeauty of the mathematics and the method—do the sun
further experimentation, allowing the discovery of correctorrectly and the correct answemstresult.
unique solutions when further constraints or data become avail-The analyses of the three datasets presented here dem
able. Fourth, by determining both the spectral shapes and thetiate that this simple concept has great power and offers
fractional distribution within the voxels, BSD allows a muchmew tool for analysis of bilinear problems in a humber of
purer reconstruction of the spectra associated with underlyifiglds. In spectral analysis, time series analysis, and econ
tissue which is not spatially resolved than any other methadetrics, the data often take the form of a bilinear distribu:
Finally, BSD avoids biasing the results in any way. BSD onlgion which may be amenable to analysis by BSD. Presentl
“knows” the number of underlying spectra to look for and hase are exploring a number of extensions to our origina
no preference for one spectral shape over another. work, including modification of the prior for the mixing

In order to constrain the solution space adequately for BSbatrix to take into account local correlations, methods to fi>
to find acceptable solutions, certain limitations must be afite flux scale in the two domains independent of scalin

FIG. 10. CSI dataset (156 spectra from 2 axial slices of human calf muscle): (a){Dineage is shown with the 18 16 overlay for the CSI voxels together
with a box indicating the location of the spectra shown in (b).*{B)spectra from the region outlined in (a) are shown (25 of 156 spectra shown). (c) The 16
16 amplitude distribution is shown for the three reconstructed spectral shapes. At the top is shape 1, in the middle is shape 2, and at the botm is
Although 16 X 16 voxels are shown, the dataset does not include voxels outside the leg, so these are automatically set to zero amplitude. (d) Tl
reconstructed spectral shapes are shown, numbered from top to bottom. Gaussian lineshapes with widths of 5 points were used by BSD. See Tabl
summary of the peak locations and the differences between spectra.
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during averaging, modifications to spectral |ineshapes t® B. M. Hill, Bayesian forecasting of economic time series, Econo-

allow the width to vary throughout the dataset which should

metric Theory 10, 483-513 (1994).

be of use in mass spectrometry, and the application of BSP G. J. Marseille, R. DeBeer, A. F. Mehlkopf, and D. van Ormond,

to other fields.
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